2,146 research outputs found

    Galilieo-Newtonian Relativity

    Get PDF
    AbstractThe velocity c =(ɛ0μ0)i2 appears in Maxwell's equations, but these equations say nothing about that velocity with respect to an absolute background and give no reference frame against which that velocity is measured. All experimenters obtain the same values for ɛ0 and μ0, so the observed velocity is the same in any observer's reference frame. Since the speed of the moving observer can assume any value, the EM energy or wave leaving the source must have speed components in a continuous range, including c as measured in any arbitrary reference frame. The reference frame independent nature of Maxwell's equations does not prohibit a range of velocities, but instead dictates this to be so, and herein we develop a Galilean invariant form of Maxwell's equations. Thus, Maxwell's equations indicate there are physically detectable components of any EM energy that reach an observer faster or slower than a component traveling at c as measured by that observer. It is this peculiar nature of light that led to the development of special relativity, but it is shown that the Lorentz transformations are nothing more than an elegant manipulation of the Galilean transformations with no physical basis of support. A direct consequence of this demonstration is the possibility of superluminal communications and travel, such as may have been demonstrated with neutrinos at CERN

    Microsatellite primers for red drum (Sciaenops ocellatus)

    Get PDF
    In this note, we document polymerase-chain-reaction (PCR) primer pairs for 101 nuclear-encoded microsatellites designed and developed from a genomic library for red drum (Sciaenops ocellatus). Details of the genomic library construction, the sequencing of positive clones, primer design, and PCR protocols may be found in Karlsson et al. (2008). The 101 microsatellites (GENBA NK Accession Numbers EU015882-EU015982) were amplified successfully and used to genotype 24 red drum obtained from Galveston Bay, Texas (Table 1). A total of 69 of the microsatellites had an uninterrupted (perfect) dinucleotide motif, and 30 had an imperfect dinucleotide motif; one microsatellite had an imperfect tetranucleotide motif, and one had an imperfect and compound motif (Table 1 ). Sizes of the cloned alleles ranged from 84 to 252 base pairs. A ‘blast’ search of the GENBANK database indicated that all of the primers and the cloned alleles were unique (i.e., not duplicated)
    • …
    corecore